A New Mixed Gate Diffusion Input Full Adder Topology for High Speed Low Power Digital Circuits

نویسندگان

  • Adarsh Kumar Agrawal
  • S. Wairya
  • R. K. Nagaria
  • S. Tiwari
چکیده

This paper mainly presents Mixed Gate Diffusion Input Full Adder based on static CMOS inverter topology. In this proposed mixed Full Adder topology, GDI Full adders are followed by inverters in the long Full Adder chain to improve the performances as compared to conventional single topology Full adder chain. For any circuits reducing the speed and power dissipation are the important constraints. By changing the number of full adders between two consecutive inverters the delay, the dynamic and leakage power dissipation can be optimized. Delay and power has been evaluated by HSPICE simulation using TSMC 0.35μm and 0.18μm CMOS technologies considering minimum power design. The simulation results reveal better delay and power performance of proposed mixed full adder topology as compared to existing mixed Full Adder topologies at both 0.35μm and 0.18μm CMOS technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Low Cost Full Adder Cell Using the nonlinear effect in Four-Input Quantum Dot Cellular Automata Majority Gate

In this article, a new approach for the efficient design of quantum-dot cellular automata (QCA) circuits is introduced. The main advantages of the proposed idea are the reduced number of QCA cells as well as increased speed, reduced power dissipation and improved cell area. In many cases, one needs to double the effect of a particular inter median signal. State-of-the-art designs utilize a kind...

متن کامل

Evolutionary QCA Fault-Tolerant Reversible Full Adder

Today, the use of CMOS technology for the manufacture of electronic ICs has faced many limitations. Many alternatives to CMOS technology are offered and made every day. Quantum-dot cellular automata (QCA) is one of the most widely used. QCA gates and circuits have many advantages including small size, low power consumption and high speed. On the other hand, using special digital gates called re...

متن کامل

Comparative Performance Analysis of XOR- XNOR Function Based High-Speed CMOS Full Adder Circuits For Low Voltage VLSI Design

This paper presents comparative study of high-speed, low-power and low voltage full adder circuits. Our approach is based on XOR-XNOR design full adder circuits in a single unit. A low power and high performance 9T full adder cell using a design style called “XOR (3T)” is discussed. The designed circuit commands a high degree of regularity and symmetric higher density than the conventional CMOS...

متن کامل

Symmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)

Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...

متن کامل

Design & study of a low power high speed full adder using GDI multiplexer

The binary adder is the critical element in most digital circuit designs including digital signal processors (DSP) and microprocessor data path units. As such, extensive research continues to be focused on improving the power delay performance of the adder. This paper proposes a new method for implementing a low power full adder by means of a set of Gate Diffusion Input (GDI) cell based multipl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009